NC Innovation Index &

Next Generation Power Electronics Manufacturing Innovation Institute

John Hardin, Executive Director
NC Board of Science & Technology
www.nccommerce.com/scitech
March 6, 2014

DEPARTMENT OF COMMERCE

NC Innovation Index

Innovation, Technology & the Economy

- Between one-third to one-half of economic growth in U.S. can be attributed to innovation (Source: U.S. Department of Commerce 2012)
 - Innovation has big (5x) multiplier effect (<u>across sectors & skill levels</u>)

 (Source: Moretti 2013)
- U.S. Bureau of Labor Statistics data show that in 70 of 71 high-tech occupations, median income exceeds median for all occupations
- In 57 of these occupations, median income is 50% or more above overall industry median

Bottom line:

A high-productivity, high-employment, high-income economy must be an innovation-driven, high-tech economy

Innovation Ecosystem

Innovation Index

- Comprehensive measurement of ecosystem's health
- Several purposes:
 - Identify strengths & weaknesses
 - Inform decisions & policy making
 - Establish benchmarks & measure effectiveness
- A comprehensive & effective index should:
 - Focus on multiple components of innovation ecosystem
 - Include multiple measures for each component
 - Compare on multiple dimensions spatially & temporally

Summarized Today:

A small sample (5%) of key measures. . .

Summary Findings

- NC's innovation ecosystem is moderately healthy (ranks 24th overall) & not improving much
- On 27 of 38 measures, NC's "Percent of U.S. Average Value" is below average, meaning NC underperforms nation overall
- Performance across indicators varies widely
- Innovation assets & activities are concentrated geographically (place matters)
- Need to understand state as a whole and differences across state
- Strong potential for increased innovation & commercialization

Dashboard Overview

Red is bad

Green is good

Gray is neutral

Selected Key Measures

2.1a - Total R&D Expenditures as a Percentage of GDP, All US States 2008

Source: National Science Board

2.3a - <u>Academic</u> Science and Engineering R&D per \$1,000 of State GDP, All U.S. States, 2009

Source: National Science Board

2.1e - Location of R&D Expenditures in North Carolina 2010

Businesses establishments perform 73% of R&D in NC; of that, Mfg. establishments perform 70%; universities perform 23% of R&D in NC

3.1a - Average Annual SBIR & STTR Funding per \$1 Million of GDP, All U.S. States, 2008-2010

3.1b - SBIR & STTR Funding per \$1M GDP, 2000-10

Trend:

NC's SBIR/STTR funding ratio increased faster than U.S. average and all comparison states

Reasons:

- 1. SBTDC's SBIR
 Program Specialist
- 2. One NC Small Business Program

Source: National Science Board and SBIR.gov

4.1a - High-Technology Establishments as a Percentage of Total Establishments, All U.S. States, 2008

Source: National Science Board

5.5a - Educational Attainment, All U.S. States, 2011

Weighted measure (composite score) of the education attainment of residents aged 25 years and over

Source: U.S. Census Bureau

Implications & Priorities

- Research & Development Increase volume, intensity, & collaboration
- Commercialization Better leverage/fund strong asset base
- Innovative Organizations Boost entrepreneurship & business linkages
- Education & Workforce Emphasize STEM and strengthen core

Efforts must be:

- Sufficiently long-term and well-funded to make a difference
- Guided by clear benchmarks & performance criteria

National Network for Manufacturing Innovation Program

Manufacturing's Economic Impact

Manufacturing Scale-up Gap

Gap in Manufacturing Innovation

Institutes for Manufacturing Innovation (IMI)

- IMIs will offer **shared-use facilities** comprising an "industrial commons" (the R&D, engineering, and manufacturing capabilities needed to turn inventions into competitive, manufacturable commercial products)
- Applied R&D projects that reduce the cost and risk of developing and implementing new technologies in advanced manufacturing
- Education and workforce training at all levels
- Engagement with Small-to-Medium Enterprises (SMEs)
- Regional, high-impact focus, with history of technical strength

Attributes of each IMI

- **Partnership** between government, industry, and academia, supported with cost-share funding from federal and nonfederal sources.
 - \$70-120 million in total Federal funds over a 5-7 year timeframe
 - Minimum 1:1 cost share (non-federal) can be cash, property, personnel, etc.
 - Led by independent, not-for-profit
 institutions/universities that strongly leverage industry
 consortia, regional clusters, and other resources
- Must be sustainable (self-supporting) moving forward

NNMI Network

NC STATE UNIVERSITY

Next Generation Power Electronics Manufacturing Innovation Institute

Dennis Kekas

Interim Executive Director, Next Generation Power Electronics Manufacturing Innovation Institute

Next Generation Power Electronics Manufacturing Innovation Institute

Vision: Wide bandgap technology for a more energy efficient world

Mission: Develop a manufacturing-focused innovation ecosystem to reduce cost, improve performance and reliability, and enable U.S. industry dominance in WBG semiconductor devices and systems to create **jobs**

Founding Partners

Wafer **Suppliers**

Design House /Device Manufacture

MONOLITH SEMICONDUCTOR INC.

Device and Package **Foundry**

Power Electronics Companies

COSHIBA

Leading Innovation >>>

RD&D

NC STATE UNIVERSITY

Florida State University

DfR Solutions reliability designed, reliability delivere

Why NC State?

Expertise

Why NC State?

<u>Infrastructure</u>

NC State's Centennial Campus

Analytical Instrumentation Facility

NCSU Nanofabrication Facility

Why NC State?

Industry Partnerships

Centers & Institutes draw about 180 partners, including some of the top names in industry.

BSN_{medical}

(2)3 Kimberly-Clark

EASTMAN

CISCO.

